Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences ; XLVIII-M-1-2023:211-216, 2023.
Article in English | ProQuest Central | ID: covidwho-2300422

ABSTRACT

The role of animal movement in spreading infectious diseases is highly recognized by various legislations and institutions such as the World Organisation for Animal Health and the International Animal Health Code. The increased interactions at the nexus of human-animal-ecosystem interface have seen an unprecedented introduction and reintroduction of new zoonotic diseases with high socio-economic impacts such as the COVID-19 pandemic. Rift Valley fever (RVF) is a zoonotic disease that affects both humans and animals and is transmitted by Aedes mosquitoes or through contact with the body fluids of infected animals. This study seeks to characterize movement patterns of pastoralist and how this movement behaviour increases their susceptibility to RVF virus exposure. We levarage on a rapidly growing field of movement ecology to monitor five herds collared from 2013 – 2015 in an RVF endemic semi-arid region in Kenya. The herds were also sampled for RVF antibodies to assess their exposure to RVF virus during the rainy seasons. adehabitatLT package in R was used to analyze the trajectory data whereas the first passage time (FPT) analysis was used to measure the area utilized in grazing. Sedentary herds grazed within 15km radius while migrating herds presented restricted space use patterns during the dry seasons and transient movement during the start and end of the rainy season. Furthermore, RVF virus antibodies were generally low for sedentary herds whereas the migrating herds recorded high levels during their transition periods. This study can be used to identify RVF risk zones for timely and targeted management strategies.

2.
ACS Sustainable Chemistry and Engineering ; 2023.
Article in English | Scopus | ID: covidwho-2294964

ABSTRACT

Atmospheric water harvesting (AWH) is a potentially promising small-scale approach to alleviate the water crisis in arid or semiarid regions. Inspired by the asymmetric structure of tillandsia leaves, a plant species native to semiarid regions, we report the development of a bioinspired composite (BiC) to draw moisture for AWH applications. With the advent of the post-COVID era, the nonwoven materials in used masks are discarded, landfilled, or incinerated along with the masks as medical waste, and the negative impact on the environment is inevitable. The nonwoven sheet has porosity, softness, and certain mechanical strength. We innovatively developed BiCs, immobilizing hygroscopic salt with a nonwoven mask for fast vapor liquefaction and using a polymer network to store water. The resulting BiC material manages to achieve a high-water adsorption capacity of 1.24 g g-1 under a low-moderate humidity environment and a high-water release ratio of ca. 90% without the use of photothermal materials, while maintaining high structural integrity in cyclic testing. © 2023 American Chemical Society.

3.
Remote Sensing ; 15(3), 2023.
Article in English | Scopus | ID: covidwho-2268826

ABSTRACT

Agricultural intensification has resulted in the depletion of groundwater resources in many regions of the world. A prime example is Saudi Arabia, which witnessed dramatic agricultural expansion since the 1970s. To explore the influence of policy interventions aimed to better manage water resources, accurate information on the changes in the number and acreage of center-pivot fields is required. To quantify these metrics, we apply a hybrid machine learning framework, consisting of Density-Based Spatial Clustering of Applications with Noise, Convolutional Neural Networks, and Spectral Clustering, to the annual maximum Normalized Differential Vegetation Index maps obtained from Landsat imagery collected between 1990 to 2021. When evaluated against more than 28,000 manually delineated fields, the approach demonstrated producer's accuracies ranging from 83.7% to 94.8% and user's accuracies ranging from 90.2% to 97.9%. The coefficient of determination ((Formula presented.)) between framework-delineated and manually delineated fields was higher than 0.97. Nationally, we found that most fields pre-dated 1990 (covering 8841 km (Formula presented.) in that year) and were primarily located within the central regions covering Hail, Qassim, Riyadh, and Wadi ad-Dawasir. A small decreasing trend in field acreage was observed for the period 1990–2010. However, by 2015, the acreage had increased to approximately 33,000 fields covering 9310 km (Formula presented.). While a maximum extent was achieved in 2016, recent decreases have seen levels return to pre-1990 levels. The gradual decrease between 1990 to 2010 was related to policy initiatives designed to phase-out wheat, while increases between 2010 to 2015 were linked to fodder crop expansion. There is evidence of an agricultural uptick starting in 2021, which is likely in response to global influences such as the COVID-19 pandemic or the conflict in Ukraine. Overall, this work offers the first detailed assessment of long-term agricultural development in Saudi Arabia, and provides important insights related to production metrics such as crop types, crop water consumption, and crop phenology and the overarching impacts of agricultural policy interventions. © 2023 by the authors.

4.
3rd IEEE International Conference on Electronics, Control, Optimization and Computer Science, ICECOCS 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2213266

ABSTRACT

IoT(Internet of Things) devices are very useful tools for health monitoring, telehealth and teleconsultation. They bring a very positive added value to the different modes of health intervention. Health is one of the most valuable aspects of our lives. In some countries, especially in developing countries, health facilities are not sufficiently developed to meet the needs of the population for primary health care and emergency response. Therefore, there is a need to replace these gaps with IoT devices that will fill the medical deserts. For this reason, in this article, a general review of the literature on IoT devices for health is done. It results in a proposal for a new type of intelligent medical device to assist patients and health workers equipped with sensors for the automatic collection of patients' physiological data in order to make medical consultation more easily accessible to all and at a distance and, on the other hand, to alleviate the shortage of health workers and, moreover, to free doctors from the repetitive tasks they perform at each examination so that they can concentrate on the care to be administered and the psychological care of patients. © 2022 IEEE.

5.
Atmospheric Chemistry and Physics ; 22(18):12153-12166, 2022.
Article in English | ProQuest Central | ID: covidwho-2040263

ABSTRACT

A knowledge gap exists concerning how chemical composition and sources respond to implemented policy control measures for aerosols, particularly in a semi-arid region. To address this, a single year's offline measurement was conducted in Hohhot, a semi-arid city in northern China, to reveal the driving factors of severe air pollution in a semi-arid region and assess the impact of the COVID-19 lockdown measures on chemical characteristics and sources of PM2.5. Organic matter, mineral dust, sulfate and nitrate accounted for 31.5 %, 14.2 %, 13.4 % and 12.3 % of the total PM2.5 mass, respectively. Coal combustion, vehicular emission, crustal source and secondary inorganic aerosols were the main sources of PM2.5 in Hohhot, at 38.3 %, 35.0 %, 13.5 %, and 11.4 %, respectively. Due to the coupling effect of emission reduction and improved atmospheric conditions, the concentration of secondary inorganic components, organic matter and elemental carbon declined substantially from the pre-lockdown (pre-LD) period to the lockdown (LD) and post-lockdown (post-LD) periods. The source contribution of secondary inorganic aerosols increased (from 21.1 % to 37.8 %), whereas the contribution of vehicular emission reduced (from 35.5 % to 4.4 %) due to lockdown measures. The rapid generation of secondary inorganic components caused by unfavorable meteorological conditions during lockdown led to serious pollution. This study elucidates the complex relationship between air quality and environmental policy.

6.
Environ Sci Pollut Res Int ; 29(39): 59118-59126, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-2000057

ABSTRACT

Since the year 2020, the use of plastic as a strategy to mitigate the spread of COVID-19 disease has been given substantial attention. Global environmental contamination of plastic creates waste and is a known threat to soil ecosystems as a main sink of microplastics. However, there is still considerable uncertainty about microplastics controlling soil properties alteration. Therefore, we carried out an incubation experiment with soil and Carex stenophylla Wahlenb., which are the dominant soil and grass species in semi-arid regions. We investigated the effect of polymer polyethylene terephthalate (PET) concentrations (0%, 1%, 3%, and 5%) on C. stenophylla growth and soil ammonium-N and nitrate-N, organic matter content, pH, soil aggregates, and soil respiration. When soils were exposed to PET microplastics, fewer seeds germinated (62.8 ± 32%) but not significantly (p value > 0.05) when soils were treated to 0, 1, 3, and 0.5% PET. Shoot height was also not effectively reduced with PET. The soil pH was considerably lower when exposed to higher PET compared to all other treatments with the soil exposed to 5% w/w PET for both unplanted and planted, being 0.84 and 0.54 units, respectively, lower than the controls. The soil microbial respiration under exposure to PET was considerably increased in comparison to control samples. Moreover, the presence of PET resulted in potential alterations of soil stability, and with PET present soil stability increased. In conclusion, PET microplastics cannot significantly affect the development of C. stenophylla but could affect crucial soil properties. In addition, changes occurred with increased variability in soil ammonium-N and nitrate-N, particularly at a high PET ratio.


Subject(s)
Ammonium Compounds , COVID-19 , Ecosystem , Microplastics , Nitrates , Plastics , Poaceae , Polyethylene Terephthalates , Soil/chemistry
7.
Advances in Meteorology ; 2022, 2022.
Article in English | ProQuest Central | ID: covidwho-1932852

ABSTRACT

Tourism is more sensitive and susceptible in global arid regions to climate change than other sectors, and climate change mainly affects the behavior of tourists, selection of tourist destinations, tourism resources, and tourism safety. China’s Xinjiang Uygur Autonomous Region (XUAR) is a representative area of the global arid region. To review its comprehensive impacts of climate change on tourism has indicative significance for the global arid region tourism industry to cope with climate change impacts. On the whole, the impacts of climate change on tourism in the XUAR will coexist with opportunities and challenges both at present and in the future. The XUAR is experiencing or will experience climatic process of warming and wetting. For the tourism climate comfort and extension of suitable travel period, the opportunities far outweigh the risks (high reliability). However, future climate change is expected to have great negative effects on cultural heritages, glacier and snow resources, and agricultural landscapes in arid areas of northwest China (high reliability). The above impacts are potential and long-term, and the measures should be taken as soon as possible to mitigate and adapt to climate change challenges to tourism.

8.
IOP Conference Series. Earth and Environmental Science ; 1050(1):012026, 2022.
Article in English | ProQuest Central | ID: covidwho-1931769

ABSTRACT

Air filtration is an essential process in indoor air conditioning and its physical removal of particulate matter is critical for enhancing indoor air quality, especially in arid regions including United Arab Emirates. In such regions, meeting indoor air quality standard is challenging during sporadic sandstorms when common air conditioning systems are unable to maintain indoor air quality properly. Such inability occurs either due to air infiltration through building’s fenestrations exposing indoor air to excessive particulate matter or the failure of inlet air filters after rapid clogging and high pressure drops. Such failure may be observed frequently in buildings with frequent openings such as public buildings and warehouses. Aerosolized pathogenic microorganisms, e.g., SARS-CoV-2 virus, can be modelled through air particle matter and be removed to a certain degree. In addition, the recent global pandemic raised more awareness towards the necessity of particulate matter filtration in indoor environment. Employing independent air filtration units might be a great solution for intermittent or emergency situations, when primary or additional air filtration process is required to attain proper indoor air quality. The main objective of this paper is to attempt designing, manufacturing, and utilizing an easy to set portable filtration unit and to assist buildings’ existing air conditioning systems in airborne dust particle elimination. The unit is designed and manufactured with additional feature accommodating easy installation of commercially available filters for further performance studies. The unit was equipped with all necessary performance monitoring sensors to detect key parameters such as air velocity, pressure differential, temperature, humidity, and particulate matter before and after filtration. The results revealed interesting information associated with the performance of commercially available filters and the feasibility of such independent filtration units.

9.
Current Science (00113891) ; 122(7):766-767, 2022.
Article in English | Academic Search Complete | ID: covidwho-1824355

ABSTRACT

The article focuses on export led growth for agriculture.

10.
Aerosol and Air Quality Research ; 21(11), 2021.
Article in English | ProQuest Central | ID: covidwho-1771477

ABSTRACT

In the present study, we focused on the impact of lockdown on black carbon (eBC) mass concentrations and their associated radiative implications from 01st March to 30th June 2020, over a semi-arid station, i.e., in the district of Anantapur in Southern India. The mean eBC mass concentration was observed before lockdown (01st–24th March 2020) and during the lockdown (25th March–30th June 2020) period and was about 1.74 ± 0.36 and 1.11 ± 0.14 µg m–3, respectively. The sharp decrease (~35%) of eBC mass concentration observed during the lockdown (LD) period as compared with before lockdown (BLD) period, was mainly due to the reduction of anthropogenic activities and meteorology. Furthermore, during the entire LD period, the net composite forcing at the top of the atmosphere (TOA) and at the surface (SUR) varied from –4.52 to –6.19 Wm–2 and –22.91 to –29.35 Wm–2, respectively, whereas the net forcing in the atmosphere (ATM) varied from 17.27 to 23.16 Wm–2. Interestingly, the amount of energy trapped in the atmosphere due to eBC is 11.19 Wm–2 before LD and 8.56 Wm–2 during LD. It is concluded that eBC contributes almost 43–50% to the composite forcing. As a result, the eBC atmospheric heating rate decreased significantly (25%) when compared to before lockdown days to lockdown days.

11.
International Journal of Social Economics ; 49(5):685-709, 2022.
Article in English | ProQuest Central | ID: covidwho-1769480

ABSTRACT

Purpose> This paper aimed to study the optimal way to implement and subsequently manage the new metropolitan lines in the Kuwait city as well as to justify them from a social and economic-financial viability standpoint and the most important aspects of transport infrastructure projects viability. The implementation of new modes of transport in an urban environment requires the study of several factors that allow their incorporation on the transport system in the most efficient method. These factors include reviewing the organization of the transport system. The concept of transport system organization, financing models and common trends was defined. Finally, the Public Transport Authority was created to define global objectives and establish specific policies to achieve them was suggested.Design/methodology/approach> After the analysis of the “status quo” of transport systems organization, the financing and management schemes, both infrastructure projects and the provision of rail service were analysed. The characteristics of the PPP scheme (Public–Private Participation) contract, advantages and disadvantages, its structure, and the definition and share of risk (matrix of risk, rights and obligations of the parties) as a key element of the PPP contracts were defined. From this point onwards, the legal framework in force in Kuwait was analysed, particularly the administrative and commercial regulations applying to this project and the authors verified that the economic-financial viability analysis suggested before can be established under this framework.Findings> For the viability of these alternatives, the authors developed a simulation economic-financial model that reflects Financial Statements for the “Society Vehicle Project” and are considered some minimum thresholds of profitability, both from the viewpoint of the partners sponsoring the project as from the standpoint of lenders, which make attractive participation of private initiative. Finally, there was a short socio-economic analysis to justify the project implementation from a social standpoint. It analyses and quantifies the reduction of operating expenses of other modes of transport, travelling times, accident rates, environmental pollution etc. All these factors affect the quality of life of the population of Kuwait and are the main reason to carry out this project. Several recommendations were raised that aimed at preparing the projects, bidding and selection of private partner and the articulation and implementation of projects.Originality/value> This research contributes to the existing body of knowledge through setting the framework for metro projects in arid regions with the hottest temperature on Earth such as Kuwait where such projects are missing completely. This work will be very helpful to governments and municipalities in taking investment decisions. It sets the strategy for utilizing the best of decision-making theory, identifying the reliability advantages and finding the larger economic effects. This work identified, through the analysis of alternative management options generally used in underground and rail projects in different parts of the world, the most convenient alternative in developing countries. It also clearly showed, through the analysis carried out on governmental contributions, how to obtain economic viability for such types of projects. Finally, it helped drawing a roadmap for preparing the projects, bidding and selection of private partner and the articulation and implementation of projects in Kuwait and Gulf Cooperation Countries (GCC).

12.
Horticulturae ; 8(2):171, 2022.
Article in English | ProQuest Central | ID: covidwho-1715274

ABSTRACT

Nowadays, there is a large demand for nutrient-dense fruits to promote nutritional and metabolic human health. The production of commercial fruit crops is becoming progressively input-dependent to cope with the losses caused by biotic and abiotic stresses. A wide variety of underutilized crops, which are neither commercially cultivated nor traded on a large scale, are mainly grown, commercialized and consumed locally. These underutilized fruits have many advantages in terms of ease to grow, hardiness and resilience to climate changes compared to the major commercially grown crops. In addition, they are exceptionally rich in important phytochemicals and have medicinal value. Hence, their consumption may help to meet the nutritional needs of rural populations, such as those living in fragile arid and semi-arid regions around the world. In addition, local people are well aware of the nutritional and medicinal properties of these crops. Therefore, emphasis must be given to the rigorous study of the conservation and the nutritional characterization of these crops so that the future food basket may be widened for enhancing its functional and nutritional values. In this review, we described the ethnobotany, medicinal and nutritional values, biodiversity conservation and utilization strategies of 19 climate-resilient important, underutilized fruit crops of arid and semi-arid regions (Indian jujube, Indian gooseberry, lasora, bael, kair, karonda, tamarind, wood apple, custard apple, jamun, jharber, mahua, pilu, khejri, mulberry, chironji, manila tamarind, timroo, khirni).

13.
Agronomy ; 12(2):327, 2022.
Article in English | ProQuest Central | ID: covidwho-1699815

ABSTRACT

Phosphorus (P) is one of the essential nutrients for alfalfa (Medicago sativa L.) growth, but P deficiency in soil is a common phenomenon. Applying an appropriate amount of P fertilizer for alfalfa in the establishment year improves winter survival, helps achieve sustainable high yields, and promotes the best economic returns. The objective of this study was to determine the effect of different P fertilization rates (0, 22, 44, and 66 kg P ha−1) on winter survival, forage yield, and root traits of two late-summer seeded alfalfa cultivars (dormant and semi-dormant) in the establishment and first production year. Our results showed that applying an appropriate amount of P fertilizer can increase forage yield and enhance the persistence of late-summer seeded alfalfa by promoting the development of crown and root traits and improving winter survival, especially for semi-dormant cultivars. Late-summer seeding and application of appropriate P fertilizer rates are effective agronomic methods for alfalfa in cold and arid winter regions, and can be used as strategies to improve fertility and stabilize soil from wind erosion for sustainable agriculture. To obtain high rate of survival in winter, the optimal P fertilization rates for the dormant and semi-dormant alfalfa cultivars in this study were 31.4 and 41.3 kg P ha−1, whereas the optimum P application rates for high forage yields were 31.3 and 31.5 kg P ha−1, respectively.

14.
Remote Sensing ; 14(2):415, 2022.
Article in English | ProQuest Central | ID: covidwho-1636170

ABSTRACT

The leaf area index (LAI), a valuable variable for assessing vine vigor, reflects nutrient concentrations in vineyards and assists in precise management, including fertilization, improving yield, quality, and vineyard uniformity. Although some vegetation indices (VIs) have been successfully used to assess LAI variations, they are unsuitable for vineyards of different types and structures. By calibrating the light extinction coefficient of a digital photography algorithm for proximal LAI measurements, this study aimed to develop VI-LAI models for pergola-trained vineyards based on high-resolution RGB and multispectral images captured by an unmanned aerial vehicle (UAV). The models were developed by comparing five machine learning (ML) methods, and a robust ensemble model was proposed using the five models as base learners. The results showed that the ensemble model outperformed the base models. The highest R2 and lowest RMSE values that were obtained using the best combination of VIs with multispectral data were 0.899 and 0.434, respectively;those obtained using the RGB data were 0.825 and 0.547, respectively. By improving the results by feature selection, ML methods performed better with multispectral data than with RGB images, and better with higher spatial resolution data than with lower resolution data. LAI variations can be monitored efficiently and accurately for large areas of pergola-trained vineyards using this framework.

15.
Remote Sens Appl ; 23: 100557, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1279684

ABSTRACT

Law enforcement and massive media awareness, limiting the anthropogenic disturbance, is the way to go for implementing successful desert native vegetation recovery plans. A lesson learned on the resiliency of desert ecosystems throughout studying the native vegetation coverage in the Wadi Al-Batin desert ecosystem during the COVID-19 pandemic. Wadi Al-Batin tri-state desert (89,315 km2) covers the South-western part of Iraq, State of Kuwait, and the North-eastern part of Saudi Arabia. In this study, the spatiotemporal changes in vegetation coverage was detected, by using Sentinel-2A imageries, during the period from 2017 to 2020. For better understanding the impact of associated law enforcement and media practices during COVID-19 pandemic, native vegetation coverage of years with relevant rainfall records were compared. The results revealed that despite receiving the least amount of rain of the three years (≤93 mm), the COVID-19 year (2020) had the highest native vegetation coverage at 28.5% compared with 6% in 2017, and 2% in 2018. These results prove that the main drivers of desert vegetation deterioration are anthropogenic activities, such as quarrying, overgrazing, distractive camping, and off-road vehicle movements. Moreover, the estimated 63% vegetation coverage in Wadi Al-Batin desert in 2019 assures the significant role of precipitation in desert vegetation recovery. This bulk increase in vegetation coverage detected during COVID-19 pandemic shows that the desert vegetation adapts to harsh environments (low rainfall) and rapidly recovers once the source of the disturbance was removed by enforcing the environmental rules. Thus, the protection of natural resources and ecosystems can be achieved through the synergy between governments and civil communities, including intensive awareness of environmental impacts via media, enforcing environmental regulations, and promoting regional collaboration.

SELECTION OF CITATIONS
SEARCH DETAIL